An Evaluation Study of Current and Future Fuel Cell Hybrid Electric Vehicles Powertrains

Omar Hegazy, Joeri Van Mierlo, Philippe Lataire, Thierry Coosemans, Jelle Smenkens, Mohamed Abdel Monem, Noshin Omar and Peter Van den Bossche

Email: omar.hegazy@vub.ac.be
Outline

• Introduction

• Fuel Cell Hybrid Powertrains

• Power Control Strategies and Comparative Study

• Conclusions
Introduction

Fuel Cell Electric Vehicles (FCEVs)

>> Advantages
1. Zero Emissions
2. High efficiency
3. Low Noise

>> Disadvantages
1. Low dynamic response (during starting & transient)
2. High cost and size
3. No ability to recover the braking energy

Hybridization with High Power or/and High Energy
FCHEV Powertrains

1. FCEV
2. FC/BS HEV
3. FC/SC HEV
4. PFCHEV
FCHEV Powertrains

Commercial Vehicle: Honda FCX Clarity Fuel Cell Electric Vehicle (FCEV)

http://automobiles.honda.com/fcx-clarity/
Advantages:
- High Efficiency
- High Reliability
- Low current/voltage ripples
- Small size
Power Control Strategies

- Control Strategy Based on Efficiency Map (CSEM)
- Control Strategy Based on PSO (CSPSO)

PSO: Particle Swarm Optimization Algorithm
Control Strategy Based on Efficiency Map (CSEM)

- $\text{SoC}_{\text{ESS}}(k) < \text{SoC}_{\text{init}}$, FC is operated at its point of maximum efficiency (called “On” point)

- $\text{SoC}_{\text{ESS}}(k) > \text{SoC}_{\text{init}}$, FC is turned off (called “Off” point)
Control Strategy Based on PSO (CSPSO)

\[k_{fc}(t) = \frac{P_{fc}(t)}{P_{req}(t)} \]

\[P_{fc,\text{opti}}(k) = k_{fc}(k) \cdot P_{req}(k) + k_{SOC}(k)(P_{fc,\text{max}} - P_{fc,\text{min}}) \left(\frac{SoC_{\text{ref}} - SoC(k)}{(SoC_{\text{max}} - SoC_{\text{min}})^2} \right) \]

\[F(x) = \frac{1}{E_{\text{low,H2}}} \sum_{k=0}^{N} \frac{P_{fc,\text{opti}}(k)}{\eta(P_{fc,\text{opti}}(k))} \Delta T \]
Simulation Results & Comparative Study

Power sharing between sources

![Graph showing power sharing between sources](image)
Power sharing between sources

Simulation Results & Comparative Study

Battery SoC
Comparison of the total cost of the electric sources based driving cycles

- **FC/B HEV**
- **FC/SC HEV**
- **FC/B/SC HEV**

<table>
<thead>
<tr>
<th>NEDC</th>
<th>FTP75</th>
</tr>
</thead>
<tbody>
<tr>
<td>13981</td>
<td>13727</td>
</tr>
<tr>
<td>13243</td>
<td>12946</td>
</tr>
<tr>
<td>13827</td>
<td>13530</td>
</tr>
</tbody>
</table>
Comparison of the total mass of the electric sources based driving cycles

- FC/B HEV
- FC/SC HEV
- FC/B/SC HEV

Mass (kg)

NEDC

- 254.3
- 302.6

FTP75

- 249.4
- 297.8

Simulation Results & Comparative Study
Comparison of the total volume of the electric sources based driving cycles
Simulation Results & Comparative Study

The hydrogen improvement after using CSEM

![Graph showing the hydrogen improvement for FC/B HEV, FC/SC HEV, and FC/B/SC HEV under NEDC and FTP75 conditions.](image)
Simulation Results & Comparative Study

The hydrogen improvement after using CSPSO

- NEDC
 - FC/B HEV: 14.3%
 - FC/SC HEV: 19.2%
 - FC/B/SC HEV: 17.1%

- FTP75
 - FC/B HEV: 13.6%
 - FC/SC HEV: 20.8%
 - FC/B/SC HEV: 16.4%
Conclusions

• This paper has presented an evaluated study of different FCHEV powertrains from the point of view of the fuel economy, cost, mass and volume.

• FC/SC HEV has slightly higher fuel economy than the FC/B HEV and FC/B/SC HEV powertrains.

• FC/B HEV is smaller than the FC/SC HEV and FC/B/SC HEV powertrains.

• FC/B/SC HEV can improve the life cycle (LC) of the battery.
Thank you for your attention