Safe and Efficient Electrical Vehicle

Green ADAS

S. GLASER, D. GRUYER, O. ORFILA

IFSTTAR
Outline of the presentation

From perception to control

» Perception architecture and function

» Hardware architecture

» Results

Safety and efficiency of longitudinal ADAS

» Operating range of longitudinal ADAS

» eHorizon and map provided attributes

» Speed and distance control
Outline of the presentation

From perception to control

» Perception architecture and function
» Hardware architecture
» Results

Safety and efficiency of longitudinal ADAS

» Operating range of longitudinal ADAS
» eHorizon and map provided attributes
» Speed and distance control
Sensors choice in order to perceive environment

Perception for the on-board longitudinal applications

» Radar (long range and short range), stereovision, cameras for road markings and lanes detection and tracking,

» Ego-perception from CAN bus

» Relative and frontal perception
Hardware architecture for perception

Modules of the perception task embedded in the PERSEE board and MIPSEE cameras
Embedded perception architecture

PerSEE architecture with 1 radar (continental), 2 front cameras (MIPSEE), proprioceptive information from CAN bus
iMX6 board with ARM9Q (quad core)
Primitives extraction in MIPSEE cameras
Results and evaluation of the Obstacle detection and tracking with stereo-vision

- The error of longitudinal positions (meter) for frontal obstacles: At 10m (green), 20m (blue) and variable distances (red).
Results and evaluation of the Obstacle detection on vehicle

- Direct output of the function for a vehicle following case. By default, the system output is 200m and the ego vehicle speed if no vehicle is detected.
Outline of the presentation

From perception to control

» Perception architecture and function
» Hardware architecture

Results

Safety and efficiency of longitudinal ADAS

» Operating range of longitudinal ADAS
» eHorizon and map provided attributes
» Speed and distance control
Longitudinal ADAS

Aims

› Develop the copilot system with several objectives
 – Reproduce existing driving assistance on an electric vehicle
 – Enhance the driver safety
 – Increase the vehicle efficiency

Final Results

› Conventionnal ADAS
 – LSF, ACC, FSRACC

› Development of new ADAS
 – eACC, Gr-ACC, SAGA
Operating range of Longitudinal ADAS

<table>
<thead>
<tr>
<th></th>
<th>Without eHorizon</th>
<th>With eHorizon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic Mode</td>
<td>ACC</td>
<td>E-ACC</td>
</tr>
<tr>
<td>Eco Mode</td>
<td>Gr-ACC</td>
<td>SAGA</td>
</tr>
</tbody>
</table>

Long range information

Consumption constraint

EVS 27 - Barcelone
S. GLASER - IFSTTAR
Aims

› Provide the knowledge of the future of the road

› Subcontracted to Ecoles des Mines de Paris for the Geographic database

Results during the project

› Generation of digital map, using Open Street Map as a base layer

› Automated collection of data from GPS and inertial measures

› Generation of the possible paths, extraction of curvature, slope, speed limit ...
ACC, LSF and FSRACC specification

ACC, LSF and FSRACC

- Specification and requirements described by ISO-Norms
- Speed range, acceleration and deceleration limits, jerks are defined
- The functions aim at
 - Regulating the gap between vehicle to a given time headway
 - Maintaining a driver desired speed
 - Whatever is the lower
From ACC to E/Gr/SAGA
From ACC to E/Gr/SAGA

Speed Optimisation without interaction

eHorizon

Speed Profile computation

Speed Profile

Speed Selection

Limit speed

ACC Speed control

No vehicle detected

Vehicle detected

VI < Vdriver

ACC Following control

ACC Mode

Target Speed

Target Acc.

ACC Validation

EVS 27 - Barcelone

S. GLASER - IFSTTAR
Speed profile optimisation

Main results of the second year

› Generation of a speed profile that optimizes energy consumption and regeneration

› Based on the computation of torque request and simple battery / traction model

\[T = \frac{R_w}{2} \left(\frac{1}{2} \rho \sigma C_a V^2 + Mg \cdot C_{rr} + Mg \sin \phi_r + M\gamma \right) \]

› Three methods were evaluated
 – Direct computation
 – Dijkstra
 – A*

› Direct computation is integrated in the vehicle
 – Optimisation at High speed
 – Conventional braking at low speed
Direct computation

Method

› Find the highest speed possible that allows a regenerative braking

› First define a safe speed profile which take into account
 – Road geometry, speed limit and intersection
 – Vehicle parameter and coupled tyre road force boundaries

› Optimize the speed profile for a regenerative braking using the real vehicle possibilities
Results on vehicle
From ACC to E/Gr/SAGA

Speed Optimisation with interaction

- eHorizon
- Speed Profile computation
- Speed Profile
- Speed Selection
- ACC Speed control
- No vehicle detected
- vehicle detected Vi < Vdriver
- ACC Following control
- ACC Validation
- ACC Mode
 - Target Speed
 - Target Acc.
Distance Control

› Handle the interaction, taking into account regenerative capacity

› Safety critical, we need to evaluate the risk related with braking variation

› Definition of the safety domain and evaluation of the different strategies

\[\gamma_{\text{dec}} \]

Regenerative deceleration

ISO norm

Missing deceleration capacity
Safety domain

How to define the safety domain of an ADAS function? Two situations arise

› When the function changes from speed control to distance control

› During a distance control, when the lead vehicle brakes
Safety domain

How to define the safety domain of an ADAS function? Two situations arise

› When the function changes from speed control to distance control

› During a distance control, when the lead vehicle brakes

Both vehicles drive at 30m/s, the lead vehicle decelerates up to 7m/s. What is the remaining distance?
Safety domain

How to define the safety domain of an ADAS function? Two situations arise

› When the function changes from speed control to distance control

› During a distance control, when the lead vehicle brakes
What are the possible strategies:

› Increase the time Headway

- To reach the same distance control safety, we need to increase the time headway of the function up to 5s. The resulting distance is hard to achieve from a perception point of view, and the gap will allow other vehicles to cut in.

› Couple the Regenerative distance control with a conventional distance control

- We can obtain a collision free system if the time headway is set at 3.7s, with a switch to a conventional braking when the headway drop below 1s. The initial time headway is still huge, but remains possible. Vehicle cut-ins remain problematic

› Couple the regenerative distance control with an emergency braking

- If we aim at a small time headway, we can have a collision free system with an headway of 3s and an AEBS which activates if the headway decreases below 2s. The behavior of the system for the driver may be difficultly acceptable.
Simulation results

Several trials are realized

› Distance control

 – To compare the evolution of the SoC with respect to conventional strategy. A regeneration is possible during distance control

› Vehicle cut-in
Simulation results

Several trials are realized

- Distance control
- Vehicle cut-in
 - Safety is ensured, however, the SoC is not the main objective.
Vehicle results
Thanks for your attention

Sébastien GLASER
IFSTTAR
www.ifsttar.fr

Vehicle-Infrastructure-Driver Interactions Research Unit
14, route de la Minière, Bâtiment 824
F-78000 Versailles - Satory