Driving Cycle and Road Grade on-board prediction for the optimal energy management in EV-PHEVs

Borja Heriz Revuelta
borja.heriz@tecnalia.com

Alternative Powertrain Researcher
Tecnalia Transport Business Unit
Contents

1. Objective
2. Precedents
3. Proposal
4. The idea
5. Implementation
6. Results
7. Conclusions
Objective

Driving cycle and road grade on-line prediction over a time horizon.
• Research activities only focused on driving conditions (DCOs) real-time prediction.

 1. Obtaining some statistical parameters of the recent past vehicle speed that feed a classification technique (Fuzzy Logic, ANN, ...).

 2. Enhancing them with digital maps information and historical route data for building a Reference Driving Cycle (RCD).

• No approach **model the driver/vehicle behavior.**
 – Penalizing the prediction → extra up to 15% fuel consumption reduction can be achieved.
Proposal

• Use an ANN for modeling the driver/vehicle behavior.
 – Processing the deviation in the trip/distance domain between a RDC and the vehicle speed. It is only provoked by the driver behavior.
 – The RDC is dynamically and easily constructed using only road/route information:
 • Static → GIS (Geographical Information System, digital maps)
 • Dynamic → GIS + V2X
The idea in 3 steps

1. **Recording**
 - RDCs and driving cycles during usual journeys.
 - In the background.

2. **Neural Network Training**
 - Based on the speed deviation between the RDC and the vehicle speed **in the trip/distance domain** (not time domain).
 - Off-line task.
3. Prediction Execution (I)
3. Prediction Execution (II)

The idea in 3 steps

PRE-PROCESSING

Vehicle speed $V_{act} = f(t)$

Kalman filter

Trip domain transformation $V_x = f(d)$

Speed deviation calculation

RDC calculation $V^{RDC} = f(d)$

Dynamic adaptation of the Reference driving cycle

PREDICTION

NEURAL NETWORK NARX

POST-PROCESSING

Time domain Transformation

DCDD* = f(d)
DCTD* = f(t)
Neural Network

- NARX (Non-linear Autoregressive with exogenous inputs). Widely used in non-linear time series predictions.
 - Multilayer net with two delayed inputs, a sigmoid-based hidden layer (7-15 neurons) and pure linear-based output layer (1 neuron).
 - Training methods: Bayesian regularization, Levenberg-Marquardt.
 - Low computational efforts once trained → embedded into MCUs and DSPs.
• **Off-line work**
 – MATLAB-Based GUI for training and simulation.

• **On-line work**
 – Rapid prototyping in a MicroAutobox from dSPACE.
 – Tested in a real SEAT vehicle.
 – CANBus communication for receiving vehicle speed (road/route information **not available yet**, thinking in GIS + ADASYS Protocol).
1. Simulation results based on real speed data.
 - Predictions for 4 and 12 kilometric points with 2km prediction horizon
2. In-vehicle testing using a SEAT vehicle.
 - Trip: Martorell - Sant Joan Despí
 - Prediction horizon: 2km
 - Prediction Mean Error lower than 10 km/h
Conclusions

• Driving cycles in the surroundings of Barcelona have been on-line predicted using advanced computational techniques with an average error less than 10km/h.

• Good performances obtained using prediction horizons ranged from 1 to 5km.

• Driving cycles predictions could be used for optimizing different vehicle functions.
 – Among others, energy management in PHEVs, thermal management, transmission controls, eco-driving ADAS.
Acknowledgements

- This work has been realized in cooperation with the SEAT Technical Center under the scope of the CENIT VERDE research project granted by the Spanish Ministry of Economy and Competitiveness.