How well can early adopters of electric vehicles be identified?

Patrick Plötz and Till Gnann, Fraunhofer ISI, Karlsruhe

EVS 27: 2013, Barcelona
To achieve Europe’s climate targets, a drastic reduction in transport CO2-emissions is needed

- The EU’s long term goal is to reduce GHG emissions by 80%
- Power production and road transport have to become almost CO2-free
- This is impossible with efficiency gains in combustion engines
- New technologies and concepts are clearly needed.
- Electric vehicles powered by renewable energies can contribute significantly

Source: www.roadmap2050.eu
Identification of the first buyers is essential for effective policies and marketing

- Policy makers are widely supporting electric vehicles
 - Policies that are applied differ widely, including CO$_2$-dependent taxes, subsidies, built-up of public charging infrastructure, pilot projects and many more
 - Identification of the first user groups is essential for effective policies
 - Also relevant for car makers and effective marketing (common myth: EVs in big cities)

- Aim: Identify the potential early adopter of electric vehicles on a sound statistical basis

More electric vehicles!
Data and Method: Determining the cost optimal vehicle type for a large sample

Data: German national travel survey
25,000 households report travel behaviour
- Nation-wide travel survey including different means of transportation
- Selected trips of 16,600 cars.
- All car trips over one day and annual mileage are reported
- Additional information on employment status (fulltime, part-time, pensioner, not working)
- Additional information on city-size by number of inhabitants (6 sizes)
- Distinguish 24 user groups

Method: Cost-optimal vehicle type
Optimise individual total cost of ownership
- Fuel consumption for inner-city and outer-city driving differ strongly
- Take average trip speed to compute share of inner-city km
- Calculate total cost of ownership (vehicle purchase + fuel costs) for each user (discount for 8 years at 5%)
- Cost parameters for year 2020
- Choose cost optimal propulsion technology: Gasoline, Diesel, BEV, or PHEV

Identification of economical EV early adopter from driving data.
Driving behaviour of users differs widely – the individual needs to be studied

Each cross marks one user; Coloured areas mark cost-optimal vehicle type
Users even within groups differ widely in their behaviour.

City size by number of inhabitants →

<table>
<thead>
<tr>
<th>Employment status</th>
<th>Full time working</th>
<th>Part time working</th>
<th>Pensioners</th>
<th>not working</th>
</tr>
</thead>
<tbody>
<tr>
<td>City size</td>
<td>< 5k</td>
<td>5 – 20 k</td>
<td>20 – 50 k</td>
<td>50 – 100 k</td>
</tr>
<tr>
<td></td>
<td>share of city km</td>
<td>share of city km</td>
<td>share of city km</td>
<td>share of city km</td>
</tr>
</tbody>
</table>

X-axes range from 0 to 1 for the x-axis (km driven with average speed < 18 km/h) and from 0 to 60,000 km for the y-axis. The red dot marks the group average of both coordinates.
Electric vehicles mainly owned in small to medium city sizes and not in big cities

- Approximately 1,300 of 16,500 vehicles were cost-effective as EVs
- Find share of each group for total car ownership and for EV optimal drivers

- German EV users mainly full/part time employees in small to medium sized cities
Are any of the differences significant?

- Chi-square test of significance for difference of user shares for different sub samples

<table>
<thead>
<tr>
<th>Sub sample definition</th>
<th>City size</th>
<th>Sub sample size</th>
<th>Chi squared</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full time</td>
<td>5 – 20 k</td>
<td>196</td>
<td>2.24</td>
<td>13.4%</td>
</tr>
<tr>
<td>Full time</td>
<td>0 – 20 k</td>
<td>324</td>
<td>1.04</td>
<td>30.8%</td>
</tr>
<tr>
<td>Full time</td>
<td>0 – 50 k</td>
<td>471</td>
<td>1.64</td>
<td>20.1%</td>
</tr>
<tr>
<td>Part-time</td>
<td>5 – 20 k</td>
<td>110</td>
<td>16.4</td>
<td><10(^{-4})</td>
</tr>
<tr>
<td>Part-time</td>
<td>0 – 20 k</td>
<td>166</td>
<td>12.49</td>
<td>0.04%</td>
</tr>
<tr>
<td>Part-time</td>
<td>0 – 50 k</td>
<td>227</td>
<td>10.44</td>
<td>0.12%</td>
</tr>
</tbody>
</table>

p-value: probability that difference is due to random fluctuations
Sensitivity analysis: Significance also depends on subsample size, e.g. costs

Full time workers: Significance of difference between expected & observed share
Sensitivity analysis: Significance also depends on subsample size, e.g. costs

Part time workers: Significance of difference between expected & observed share
Comparison with other data: 6,500 driving profiles over one week from Germany

Share of EV users and all car owners from different user groups

City size by number of inhabitans

- full time (EV)
- part time (EV)
- not working (EV)
- pensioner (EV)
- full time (all)
- part time (all)
- not working (all)
- pensioner (all)
Conclusions and discussion

- **Potential early adopter** of electric vehicles in Germany from an economical perspective are full-time and part-time employees from small and medium sized cities.
- Economical early adopter in Germany do not live in big cities.
- These findings consider only the total cost of ownership but are robust and consistent with broader studies on early adopter of EVs in Germany (Plötz et al. 2013).
- **Policy implication**: Public charging infrastructure in Germany is not pressing since garages are widely available in smaller cities in Germany.

Thank you for listening!

Assumed technical and economical parameters for Germany in 2020

- Four vehicle types
- Distinction between in-city and out-of-city driving (average speed below/above 18 km/h)
- Prices for 2020: increasing fuel prices, decreasing battery prices

<table>
<thead>
<tr>
<th>Group</th>
<th>Parameter</th>
<th>Unit</th>
<th>Gasoline</th>
<th>Diesel</th>
<th>PHEV</th>
<th>BEV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical</td>
<td>Inner city fossil fuel consumption</td>
<td>l/100 km</td>
<td>8.5</td>
<td>6.3</td>
<td>7.0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Inner city electric energy consumption</td>
<td>kWh/100 km</td>
<td>-</td>
<td>-</td>
<td>18.2</td>
<td>18.2</td>
</tr>
<tr>
<td></td>
<td>Out of city fossil fuel consumption</td>
<td>l/100 km</td>
<td>5.7</td>
<td>4.5</td>
<td>6.2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Out of city electric energy consumption</td>
<td>kWh/100 km</td>
<td>-</td>
<td>-</td>
<td>20.7</td>
<td>20.7</td>
</tr>
<tr>
<td></td>
<td>Battery capacity</td>
<td>kWh</td>
<td>10.0</td>
<td>24.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Economical</td>
<td>Investment for vehicle w/o battery</td>
<td>Euro</td>
<td>23,276</td>
<td>25,656</td>
<td>25,620</td>
<td>21,885</td>
</tr>
<tr>
<td></td>
<td>Electric driving share</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>60%</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>Battery price incl. VAT</td>
<td>Euro/kWh</td>
<td>-</td>
<td>-</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>Fossil fuel price</td>
<td>Euro/l</td>
<td>1.90</td>
<td>1.79</td>
<td>1.90</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Electricity price</td>
<td>Euro/kWh</td>
<td>-</td>
<td>-</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>Pay back period</td>
<td>a</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Interest rate for investment</td>
<td>-</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
</tr>
</tbody>
</table>
Most people could charge at home easily

Where do you park at night?

- ca. 60% of all car users park in a garage
- Few people searching for parking: only 11% do not park at home
- Installation of charging would be cheap and easy in a garage

source: own calculations based on "Mobilität in Deutschland" (2008)
Summary statistics of vehicle users

Percentage denotes share of all German vehicle users

© Fraunhofer ISI
Seite 15