econnect Germany – performance and evaluation of an electrically propelled minibus for public transportation

Barcelona, 18th of November 2013

Dipl.-Ing. Felix Töpler

Forschungsgesellschaft Kraftfahrwesen mbH Aachen
Agenda

• Introduction
• Test vehicles
• Test drive results
• Analysis of performance and energy costs
• Summary
Introduction

Project name: econnect Germany; predecessor project: Smartwheels
Model region: Aachen, Allgäu, Duisburg, Leipzig, Osnabrück, Sylt, Trier
Funded by: BMWi – Federal Ministry for Economics and Technology
Duration: January 2012 till December 2014
Topic: Information and Comunications Technology (ICT) for Electro mobility
Consortial leader: smartlab
Introduction

Urbanisation

Electromobility in public transport

No local emissions

Limited resources

Increasing energy prices

CO₂ Goals

High efficiency of electric traction systems
Introduction

Velocity [km/h]

- New York bus cycle
- NYCC Line 4
- Moskau bus cycle (Aachen)
- Line 3A (Aachen)
- Line 4 (Aachen)
- Line 5 (Aachen)
- Aachen - Eifel (Expressbus Line 63)

- Maximum velocity
- Average moving velocity

<table>
<thead>
<tr>
<th>Velocity [km/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
</tr>
<tr>
<td>70</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

#113650 · 13f0017.pptx Slide Nr. 5 18.11.2013 © fka 2013 · All rights reserved
Agenda

- Introduction
- Test vehicles
- Test drive results
- Analysis of performance and energy costs
- Summary
Test vehicles
Modification of the basic vehicle

- Rear battery
- Electric traction motor with reduction gear
- AC/DC converter
- Power Distribution Unit
- Front battery
- ECU
- DC/DC converter
- 230 V charger
- HV-DC charger socket
- 230 V charger

#113650 · 13f0017.pptx Slide Nr. 7 · 18.11.2013 © fka 2013 · All rights reserved
Test vehicles
Comparison of diesel and electric bus

<table>
<thead>
<tr>
<th></th>
<th>Series vehicle</th>
<th>Electric prototype</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seats</td>
<td>12 + 1 (Driver)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stance</td>
<td>18</td>
<td>10 to 15</td>
<td></td>
</tr>
<tr>
<td>L x W x H</td>
<td>7700 x 1993 x 2845</td>
<td></td>
<td>mm</td>
</tr>
<tr>
<td>Max. Weight</td>
<td>5650</td>
<td></td>
<td>kg</td>
</tr>
<tr>
<td>Motor power</td>
<td>120</td>
<td>150 (peak)</td>
<td>kW</td>
</tr>
<tr>
<td>Maximum Speed</td>
<td>80 (electronically limited)</td>
<td>78</td>
<td>km/h</td>
</tr>
<tr>
<td>Max. Torque (at rpm)</td>
<td>360 (1200 - 2400)</td>
<td>300 (0 - 4500)</td>
<td>Nm</td>
</tr>
<tr>
<td>Max. rpm</td>
<td>4000</td>
<td>12 500</td>
<td>rpm</td>
</tr>
<tr>
<td>Gearbox</td>
<td>6-speed automatic</td>
<td>Fixed planetary gearbox</td>
<td>-</td>
</tr>
<tr>
<td>Battery capacity (gross)</td>
<td>-</td>
<td>45</td>
<td>kWh</td>
</tr>
<tr>
<td>Usable SOC window</td>
<td>-</td>
<td>15 – 95</td>
<td>%</td>
</tr>
<tr>
<td>Peak discharging current</td>
<td>-</td>
<td>400</td>
<td>A</td>
</tr>
<tr>
<td>Peak charging current</td>
<td>-</td>
<td>160</td>
<td>A</td>
</tr>
<tr>
<td>Charging time @230 V (max. 3,6 kW)</td>
<td>-</td>
<td>12</td>
<td>h</td>
</tr>
<tr>
<td>Charging time @400 V DC (max. 64 kW)</td>
<td>-</td>
<td>ca. 0,5</td>
<td>h</td>
</tr>
<tr>
<td>Motortype</td>
<td>4-cylinder Diesel</td>
<td>Hybrid-synchron-motor</td>
<td>-</td>
</tr>
</tbody>
</table>
Agenda

• Introduction
• Test vehicles
• Test drive results
• Analysis of performance and energy costs
• Summary
Test drive results
Electric bus - Line 4

<table>
<thead>
<tr>
<th></th>
<th>Unit</th>
<th>Min. payload (300 kg)</th>
<th>max. payload (1500 kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy demand</td>
<td>kWh/100km</td>
<td>41,4</td>
<td>60,2</td>
</tr>
<tr>
<td>Recuperation / Drive energy</td>
<td>-</td>
<td>0,20</td>
<td>0,19</td>
</tr>
<tr>
<td>Range with 35 kWh available</td>
<td>km</td>
<td>84,5</td>
<td>58</td>
</tr>
<tr>
<td>Charging time for 100 km</td>
<td>h</td>
<td>1,77</td>
<td>2,57</td>
</tr>
</tbody>
</table>

Charging time for 100 km with 26 kW charger

Ø-speed: 14,52 km/h
Cumulated altitude difference: 159 m
Test drive results
Electric bus - Line 63 (extra-urban express bus)

<table>
<thead>
<tr>
<th></th>
<th>Unit</th>
<th>Min. payload (300 kg)</th>
<th>max. payload (1500 kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy demand</td>
<td>kWh/100km</td>
<td>37,9 – 39,2</td>
<td>42,2 – 44,6</td>
</tr>
<tr>
<td>Recuperation / Drive energy</td>
<td>-</td>
<td>0,17</td>
<td>0,18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0,08 uphill; 0,26 downhill)</td>
<td>(0,07 uphill; 0,29 downhill)</td>
</tr>
<tr>
<td>Range with 35 kWh available energy</td>
<td>km</td>
<td>92,2</td>
<td>78,5</td>
</tr>
<tr>
<td>Charging time for 100 km with 26 kW charger</td>
<td>h</td>
<td>1,62</td>
<td>1,9</td>
</tr>
</tbody>
</table>

Ø-speed: 41,2 km/h
Cumulated altitude difference: 1000 m
Energy diagram for electric bus – Line 4
55.7 kWh / 100 km at battery; 61.9 kWh / 100 km at grid

- Charging station: 7735 Wh
- Battery: 773 Wh, 6962 Wh, 1744 Wh
- E-Motor + AC/DC: 7409 Wh
- Driving resistance (12.5 km; 0:56 h): 3260 Wh
- Recuperation: 106 Wh, 1992 Wh, 6459 Wh
- Generator + AC/DC: 1992 Wh, 2340 Wh
- Drivetrain, tires: 6459 Wh
- Mechanical brakes, friction losses: 634 Wh
- 12 V Netz: 867 Wh, 950 Wh
- DCDC: 14 Wh, 142 Wh, 106 Wh
- Power losses: 558 Wh, 14 Wh
Resulting energy demand (line 4)

Efficiencies battery ↔ E-Machine:
Driving $\eta = 83.1086\%$
Braking $\eta = 75.328\%$
Total $\eta = 81.0004\%$

Diagram showing energy demand with lines for E-Motor, E-Generator, Battery discharging, Battery charging, Battery total, and Auxiliaries.
Agenda

- Introduction
- Test vehicles
- Test drive results
- Analysis of performance and energy costs
- Summary
Analysis of performance and energy costs

Overview

The charging power was 27 kW. It can be boosted up to almost 60 kW, which would half the needed charging time, but also increase the losses while charging.

<table>
<thead>
<tr>
<th></th>
<th>Unit</th>
<th>With minimal payload</th>
<th>With maximal payload</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus line</td>
<td></td>
<td>3 4 5 13 63 Ø</td>
<td>3 4 5 13 63 Ø</td>
</tr>
<tr>
<td>Distance (ring or end-to-end)</td>
<td>km</td>
<td>11,2 13,6 25 6,3 62 -</td>
<td>11,2 13,6 25 6,3 62 -</td>
</tr>
<tr>
<td>Ø – Speed</td>
<td>km/h</td>
<td>16,9 14,5 15,8 14,9 41,2 -</td>
<td>16,9 14,5 15,8 14,9 41,2 -</td>
</tr>
<tr>
<td>Altitude difference (cumulated)</td>
<td>m</td>
<td>132 159 268 80 1000 -</td>
<td>132 159 268 80 1000 -</td>
</tr>
<tr>
<td>Ø – energy consumption at battery</td>
<td>kWh/100km</td>
<td>41,3 45,7 40,2 42,3 38,6</td>
<td>57,1 60,2 52,5 60 43,4 54,6</td>
</tr>
<tr>
<td>Ø – energy consumption at grid</td>
<td>kWh/100km</td>
<td>45,4 50,3 44,2 46,5 42,5</td>
<td>62,8 66,2 57,8 66 47,7 60,1</td>
</tr>
<tr>
<td>Recuperation / drive energy</td>
<td>-</td>
<td>0,21 0,2 0,18 0,18 0,18</td>
<td>0,19 0,16 0,2 0,19 0,17 0,17 0,18</td>
</tr>
<tr>
<td>Ø – range</td>
<td>km</td>
<td>89,8 84,5 90,4 85,6 92,2</td>
<td>88,5 60 58 66,7 56,3 78,5 63,9</td>
</tr>
<tr>
<td>Ø – charging time for 100 km*</td>
<td>h</td>
<td>1,7 1,8 1,7 1,8 1,6</td>
<td>1,7 2,5 2,6 2,2 2,7 1,9 2,4</td>
</tr>
<tr>
<td>Ø – Diesel consumption</td>
<td>l/100km</td>
<td>16 16,2 16 17 14,5</td>
<td>15,9 22,5 20,6 19,4 21,4 16,9 20,2</td>
</tr>
</tbody>
</table>
Energy costs for both vehicles for different price scenarios

Electric bus

<table>
<thead>
<tr>
<th>Price scenario</th>
<th>Price for electricity [€/MWh]</th>
<th>Energy costs [€/100km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low (average EEX price in Germany and Austria)</td>
<td>37,71</td>
<td>1,73</td>
</tr>
<tr>
<td>Medium (Average price in EA-17 for industrial consumers, 500 – 2000 MWh/a)*</td>
<td>118</td>
<td>5,40</td>
</tr>
<tr>
<td>High (assumed price for scenario with high costs for electric energy)</td>
<td>400</td>
<td>18,32</td>
</tr>
</tbody>
</table>

*Prices for 2011

Diesel bus

<table>
<thead>
<tr>
<th>Price scenario</th>
<th>Price for Diesel [€/l]</th>
<th>Energy costs [€/100km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>1,00</td>
<td>15,93</td>
</tr>
<tr>
<td>Medium</td>
<td>1,50</td>
<td>23,90</td>
</tr>
<tr>
<td>High</td>
<td>2,00</td>
<td>31,86</td>
</tr>
</tbody>
</table>

*Prices for 2011
Bandwidth of price scenarios for diesel and electric bus

Potential saving in energy costs: ~10 000 €
CO₂ emissions for electric energy production and fossil fuels

assumed efficiency of nuclear powerplant: 33 %; energy demand for nuclear waste disposal is not included

- **Specific equivalent CO₂ emissions in g/kWh**
 - Brown coal
 - Black coal
 - Natural gas
 - Photovoltaics
 - Biomass
 - Waterpower
 - Windpower
 - Nuclear power*
 - Solarthermal Power

- **CO₂ emissions in g / l fuel (kg for CNG)**
 - Diesel tank-to-wheel
 - Diesel W-T-W conventional oil
 - Diesel W-T-W shale oil
 - Biodiesel T-T-W
 - Biodiesel W-T-W
 - CNG T-T-W
 - CNG W-T-W

Sources: Bochum University; Institute of energy systems and economics; Verkehrsrundschau 51-52/2010
Comparison of CO₂ emissions from diesel and electric bus (well-to-wheel)

Minimal fuel consumption (minimal payload) & minimal CO₂ emissions well-to-wheel

Maximal fuel consumption (maximal payload) & maximal CO₂ emissions well-to-wheel

Diesel bus

Electric bus

Diesel W-T-W shale oil

Diesel W-T-W conv. oil

Brown coal

Black coal

Biodiesel W-T-W

EU-27

Natural Gas

Biomass

Photovoltaics

Renewable Energies (Wind & Water)

CO₂ emissions in g / km
Agenda

• Introduction
• Test vehicles
• Test drive results
• Analysis of performance and energy costs
• Summary
Summary

• The electric bus with a gross weight of 5.65 tons, a passenger capacity of 25 persons and a battery with a usable energy content of 35 kWh has a range of at least 60 km and maximum 95 km.

• With a DC highpower charger (ca. 25 kW) a charging time between 1,6 h and 2,7 h is necessary to recharge the battery for 100 km.

• The high efficiency of the electric drive train reduces the energy costs significantly, especially if the prices for energy are continuously rising.

• The CO\textsubscript{2} emissions can be significantly lowered by using electric traction systems.

• With the average CO\textsubscript{2} emissions in the EU made from electricity production the electric bus has emissions between 200 and 350 g CO\textsubscript{2} / km, while a diesel bus with fossil fuels from conventional oil-wells produces emissions between 440 and 640 g CO\textsubscript{2} / km.
Thank you for your attention!

Dipl.-Ing. Felix Töpler

Forschungsgesellschaft Kraftfahrwesen mbH Aachen
Steinbachstraße 7
52074 Aachen
Germany

Phone +49 241 88 61180
Fax +49 241 80 22147

Email toepler@fka.de
Internet www.fka.de